Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Bonsoir,
niveau première
Je n'arrive pas à faire cet exercive aidez-moi svp.
Une architecte doit construire une piscine rectangulaire entourée d'une clôture. La distance entre le bassin et la clôture doit être de 1 mètre dans la largeur et de 1,5 mètres dans la longueur. La surface du terrain entouré par la clôture doit être de 54 m².
(Voir photo)
L'architecte souhaite maximiser la surface de la piscine. On note x la largeur de la piscine.
1. Montrer que la surface de la piscine est égale à
[tex]x( \frac{54}{x + 2} - 3)[/tex]
2. Déterminer la valeur de x pour laquelle la surface de la piscine est maximale. Quelle est alors la surface de la piscine ?
Merci d'avance !
