Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonjour,
Je ne comprends pas les question 2 et 3 de la partie B. Pouvez vous m'aider.
Cordialement.​

Bonjour Je Ne Comprends Pas Les Question 2 Et 3 De La Partie B Pouvez Vous MaiderCordialement class=

Sagot :

Svant

Réponse:

Bonjour

On commence par traduire l'intervalle en inegalité

x€ [1;2] <=>

1 ≤ x ≤ 2

puis on applique les opérations mathématiques conduisant à l'inégalité voulue

ln(1) ≤ ln(x) ≤ ln(2) ( la fonction ln(x) est croissante sur ]0;+∞[, l'ordre est conservé)

0 ≤ ln(x) ≤ ln(2)

0/xⁿ⁺¹ ≤ ln(x)/xⁿ⁺¹ ≤ ln(2)/xⁿ⁺¹ avec xⁿ⁺¹ >0

On integre les 3 membres de l'inegalité.

par propriété, l'integrale conserve l'ordre.

∫ 0 dx ≤ ∫ ln(x)/xⁿ⁺¹dx ≤ ∫ ln(2)/xⁿ⁺¹ dx entre 1 et 2

0 ≤ Un ≤ ln(2)×[-1/(nxⁿ)] entre 1 et 2

0 ≤ Un ≤ ln(2)/n×[-1/(xⁿ)] entre 1 et 2

0 ≤ Un ≤ ln(2)/n × (-1/2ⁿ+1/1ⁿ)

0 ≤ Un ≤ ln(2)/n × ( 1 - 1/2ⁿ)

Explications étape par étape:

on primitive 1/xⁿ⁺¹ en passant par 1/xⁿ⁺¹ = x⁻ⁿ⁻¹

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.