Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour,
Je ne comprends pas les question 2 et 3 de la partie B. Pouvez vous m'aider.
Cordialement.​

Bonjour Je Ne Comprends Pas Les Question 2 Et 3 De La Partie B Pouvez Vous MaiderCordialement class=

Sagot :

Svant

Réponse:

Bonjour

On commence par traduire l'intervalle en inegalité

x€ [1;2] <=>

1 ≤ x ≤ 2

puis on applique les opérations mathématiques conduisant à l'inégalité voulue

ln(1) ≤ ln(x) ≤ ln(2) ( la fonction ln(x) est croissante sur ]0;+∞[, l'ordre est conservé)

0 ≤ ln(x) ≤ ln(2)

0/xⁿ⁺¹ ≤ ln(x)/xⁿ⁺¹ ≤ ln(2)/xⁿ⁺¹ avec xⁿ⁺¹ >0

On integre les 3 membres de l'inegalité.

par propriété, l'integrale conserve l'ordre.

∫ 0 dx ≤ ∫ ln(x)/xⁿ⁺¹dx ≤ ∫ ln(2)/xⁿ⁺¹ dx entre 1 et 2

0 ≤ Un ≤ ln(2)×[-1/(nxⁿ)] entre 1 et 2

0 ≤ Un ≤ ln(2)/n×[-1/(xⁿ)] entre 1 et 2

0 ≤ Un ≤ ln(2)/n × (-1/2ⁿ+1/1ⁿ)

0 ≤ Un ≤ ln(2)/n × ( 1 - 1/2ⁿ)

Explications étape par étape:

on primitive 1/xⁿ⁺¹ en passant par 1/xⁿ⁺¹ = x⁻ⁿ⁻¹