Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonsoir. J’ai un exercice auquel je n’arrive pas. Pourriez-vous m’aider svp? Le voici:
En tout point M de l’hyperbole d’équation = 1/x tracée dans un repère orthonormé (O ; I, J), la tangente à la courbe coupe l’axe des abscisses en N et l’axe des ordonnées en P.
Comment varie l’aire du triangle ONP quand M parcourt l’hyperbole ?

Merci d’avance (niveau première s)


Sagot :

caylus

Réponse :

Bonsoir,

Explications étape par étape

Soit M un point de l'hyperbole

[tex]M=(x_0,\dfrac{1}{x_0} )\\Equation \ de\ la\ tangente\ en\ M:\\\\y=\dfrac{1}{x} \\\\\\y'=-\dfrac{1}{x^2} \\\\y-\dfrac{1}{x_0} =-\dfrac{1}{x_0^2} (x-x_0)\\\\y=-\dfrac{1}{x_0^2}*x+x_0*\dfrac{1}{x_0^2} +\dfrac{1}{x_0} \\\\y=-\dfrac{1}{x_0^2}*x+\dfrac{2}{x_0} \\Si\ y=0\ alors\ x=2*x_0\\\\Si\ x=0\ alors\ y=\dfrac{2}{x_0}\\N=(2x_0,0); \ P=(0,\dfrac{2}{x_0})\\\\Aire\ ONP=\dfrac{2x_0*\dfrac{2}{x_0})}{2}=2[/tex]

L'aire du triangle est donc constante et vaut 2.

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.