Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour, j'ai besoin de votre aide :

1°/Démontrer que l'équation x²-x-1=0 possède une unique solution positive que nous noterons Φ. Donner la valeur arrondie de Φ à 10 puissance -5 près.

2°/Démontrer que Φ=1+1/Φ

Ps:je vous remercie de me répondre avant Jeudi.


Sagot :

Réponse :

Explications étape par étape

Bonjour

1°/Démontrer que l'équation x²-x-1=0 possède une unique solution positive que nous noterons Φ. Donner la valeur arrondie de Φ à 10 puissance -5 près.

[tex]\Delta = (-1)^{2} - 4 * 1 * (-1) = 1 + 4 = 5[/tex]

[tex]\sqrt{\Delta} = \sqrt{5}[/tex] > 0 donc 2 solutions

[tex]X1 = (1 - \sqrt{5})/(2 * 1)[/tex]

[tex]X1 = 1/2 - \sqrt{5}/2[/tex]

X1 ~ -0,61803

[tex]X2 = (1 + \sqrt{5})/2[/tex]

[tex]X2 = 1/2 + \sqrt{5}/2[/tex]

X2 ~ 2,11803

Solution positive : X2

2°/Démontrer que Φ=1+1/Φ

Φ=1+1/Φ

Φ = 1 + 1/[1/2 + [tex]\sqrt{5}/2[/tex]]

Φ = [1/2 + [tex]\sqrt{5}/2[/tex] + 1]/(1/2 + [tex]\sqrt{5}/2[/tex]

Φ = (1/2 + 2/2 + [tex]\sqrt{5}/2[/tex])/(1/2 + [tex]\sqrt{5}/2[/tex])

Φ = (3/2 + [tex]\sqrt{5}/2[/tex])(1/2 - [tex]\sqrt{5}/2[/tex]) / [(1/2 - [tex]\sqrt{5}/2[/tex])(1/2 + [tex]\sqrt{5}/2[/tex])]

Φ = (3/4 - [tex]3\sqrt{5}/4[/tex] + [tex]\sqrt{5}/4[/tex] - 5/4) / (1/4 - 5/4)

Φ = (-2/4 - [tex]2\sqrt{5}/4[/tex])/(-4/4)

Φ = (-1/2 - [tex]\sqrt{5}/2[/tex])/(-1)

Φ = 1/2 + [tex]\sqrt{5}/2[/tex]

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.