Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour, j'ai un problème avec cet exercice...


On veut déterminer la position relative de la courbe de la fonction racine carrée et de la droite d’équation y = x , pour x positif. Pour cela on étudie le signe de la fonction f définie sur [0 ; +∞[ par f (x ) = x − √x .


1) Montrer que f (x ) = √x ( √x −1).


2) Voici la représentation graphique de la fonction racine carrée. À l’aide de la courbe, résoudre graphiquement

l’inéquation √x ≥ 1.


3) Reproduire et compléter le tableau de signe suivant :
(en annexe)

En déduire l’ensemble S des solutions de f (x ) ≥ 0.


4) Grâce au tableau de signe de la question précédente, déterminer la position relative de la droite d’équation y = x et de la courbe de la fonction racine carrée, pour x positif.

Autrement dit, dire pour quelles valeurs de x , la courbe de la fonction racine carrée est au- dessus (respectivement en dessous) de la droite d’équation y = x .


5) Comparer les nombres suivants :

a) 2 et √2,

b) √2 et √√2,

c) 1/2 et 1/√2


Merci d'avance


Bonjour Jai Un Problème Avec Cet ExerciceOn Veut Déterminer La Position Relative De La Courbe De La Fonction Racine Carrée Et De La Droite Déquation Y X Pour X class=
Bonjour Jai Un Problème Avec Cet ExerciceOn Veut Déterminer La Position Relative De La Courbe De La Fonction Racine Carrée Et De La Droite Déquation Y X Pour X class=

Sagot :

Svant

Réponse :

1) [tex]\sqrt{x} (\sqrt{x} -1)=\sqrt{x} ^{2} -\sqrt{x} =x-\sqrt{x} =f(x)[/tex]

2) [tex]\sqrt{x} \geq 1[/tex] pour x ∈ [1; +∞[

3) D'après la question 2, √x - 1 ≥ 0 pour x ≥ 1

√x ≥0 pour tout x de R+

Ainsi f(x) ≥ 0 pour x ∈ [1; +∞[

4) x - √x ≥ 0 pour x ≥1

x ≥ √x pour x ≥ 1

Donc la droite d’équation y=x est au dessus de la courbe de la fonction racine carrée pour tout x ≥ 1 et en dessous pour tout 0 ≤ x ≤ 1

La droite et la courbe se coupent en x =0 et x = 1.

5)

2 ≥ 1 donc 2 ≥ √2

√2 ≥ 1 donc √2 ≥ √√2

1/2 ≤ 1 et 1/√2 = √(1/2) donc 1/2 ≤ 1/√2

Explications étape par étape

View image Svant
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.