Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, j'ai un problème avec cet exercice...


On veut déterminer la position relative de la courbe de la fonction racine carrée et de la droite d’équation y = x , pour x positif. Pour cela on étudie le signe de la fonction f définie sur [0 ; +∞[ par f (x ) = x − √x .


1) Montrer que f (x ) = √x ( √x −1).


2) Voici la représentation graphique de la fonction racine carrée. À l’aide de la courbe, résoudre graphiquement

l’inéquation √x ≥ 1.


3) Reproduire et compléter le tableau de signe suivant :
(en annexe)

En déduire l’ensemble S des solutions de f (x ) ≥ 0.


4) Grâce au tableau de signe de la question précédente, déterminer la position relative de la droite d’équation y = x et de la courbe de la fonction racine carrée, pour x positif.

Autrement dit, dire pour quelles valeurs de x , la courbe de la fonction racine carrée est au- dessus (respectivement en dessous) de la droite d’équation y = x .


5) Comparer les nombres suivants :

a) 2 et √2,

b) √2 et √√2,

c) 1/2 et 1/√2


Merci d'avance


Bonjour Jai Un Problème Avec Cet ExerciceOn Veut Déterminer La Position Relative De La Courbe De La Fonction Racine Carrée Et De La Droite Déquation Y X Pour X class=
Bonjour Jai Un Problème Avec Cet ExerciceOn Veut Déterminer La Position Relative De La Courbe De La Fonction Racine Carrée Et De La Droite Déquation Y X Pour X class=

Sagot :

Svant

Réponse :

1) [tex]\sqrt{x} (\sqrt{x} -1)=\sqrt{x} ^{2} -\sqrt{x} =x-\sqrt{x} =f(x)[/tex]

2) [tex]\sqrt{x} \geq 1[/tex] pour x ∈ [1; +∞[

3) D'après la question 2, √x - 1 ≥ 0 pour x ≥ 1

√x ≥0 pour tout x de R+

Ainsi f(x) ≥ 0 pour x ∈ [1; +∞[

4) x - √x ≥ 0 pour x ≥1

x ≥ √x pour x ≥ 1

Donc la droite d’équation y=x est au dessus de la courbe de la fonction racine carrée pour tout x ≥ 1 et en dessous pour tout 0 ≤ x ≤ 1

La droite et la courbe se coupent en x =0 et x = 1.

5)

2 ≥ 1 donc 2 ≥ √2

√2 ≥ 1 donc √2 ≥ √√2

1/2 ≤ 1 et 1/√2 = √(1/2) donc 1/2 ≤ 1/√2

Explications étape par étape

View image Svant
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.