Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Bonjour, j'ai un problème avec cet exercice...
On veut déterminer la position relative de la courbe de la fonction racine carrée et de la droite d’équation y = x , pour x positif. Pour cela on étudie le signe de la fonction f définie sur [0 ; +∞[ par f (x ) = x − √x .
1) Montrer que f (x ) = √x ( √x −1).
2) Voici la représentation graphique de la fonction racine carrée. À l’aide de la courbe, résoudre graphiquement
l’inéquation √x ≥ 1.
3) Reproduire et compléter le tableau de signe suivant :
(en annexe)
En déduire l’ensemble S des solutions de f (x ) ≥ 0.
4) Grâce au tableau de signe de la question précédente, déterminer la position relative de la droite d’équation y = x et de la courbe de la fonction racine carrée, pour x positif.
Autrement dit, dire pour quelles valeurs de x , la courbe de la fonction racine carrée est au- dessus (respectivement en dessous) de la droite d’équation y = x .
5) Comparer les nombres suivants :
a) 2 et √2,
b) √2 et √√2,
c) 1/2 et 1/√2
Merci d'avance

