Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Réponse :
Soient a et b deux entiers relatifs, on suppose que a est pair et que b est impair; montrer que 2 a + 3 b est impair
a est pair , donc il existe un entier relatif k tel que a = 2 k
b est impair, donc il existe un entier relatif k' tel que b = 2 k' + 1
2 a + 3 b = 2(2 k) + 3(2 k' + 1) = 4 k + 6 k' + 3 = 4 k + 6 k ' + 2 + 1
= 2(2 k + 3 k' + 2) + 1 on pose k'' = 2 k + 3 k' + 1 , donc il existe un entier relatif k'' tel que 2 a + 3 b = 2 k'' + 1
Explications étape par étape
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.