Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour, je ne comprends pas du tout
Pouvez vous m’aider ?
Merci


Bonjour Je Ne Comprends Pas Du Tout Pouvez Vous Maider Merci class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

Il faut commencer par définir A(x)

L'aire de OPMQ se calcule par OP×MP

OP = x

Dans le triangle MOP rectangle en P, on a OM² = OP² + PM² (Pythagore)

M étant sur le cercle, OM = 1

Donc OP² + PM² = 1 ⇔ x² + PM² = 1 ⇔ PM² = 1 - x² ⇔ PM = [tex]\sqrt{1-x^{2} }[/tex]

Donc A(x) = OP×PM = [tex]x\sqrt{1-x^{2} }[/tex]

Pour étudier les variations de A(x) , calculons sa dérivée

A'(x) = [tex]\frac{-2x^{2}+1 }{\sqrt{1-x^{2} } }[/tex]

Sur [0 ; 1] , la dérivée s'annule en [tex]\frac{\sqrt{2} }{2}[/tex]

Elle est positive sur [0 ; [tex]\frac{\sqrt{2} }{2}[/tex]] et négative sur [[tex]\frac{\sqrt{2} }{2}[/tex] ; 1]

Donc A(x) est croissante sur [0 ; [tex]\frac{\sqrt{2} }{2}[/tex]] et décroissante sur [[tex]\frac{\sqrt{2} }{2}[/tex] ; 1]

A(0) = 0 , A(1) = 0 et A([tex]\frac{\sqrt{2} }{2}[/tex]) = 0,5

L'aire maximum de OPMQ est donc de 0,5

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.