Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

DEVOIR MAISON N°3 Seconde 1
A rendre le mardi 13 novembre 2012.

Préambule : Télécharger le logiciel Geogebra :
Problème : Sur une plage de Malibu, le maître-nageur
Mitch Bukanouille utilise une corde de 160 mètres de
longueur et deux bouées pour délimiter une zone de
baignade rectangulaire. Il cherche à déterminer où
placer les bouées pour que la zone de baignade ait la plus
grande aire possible. On note x la longueur AB en mètres

.
Partie I : construction
Ouvrir le logiciel GeoGebra. L’axe des abscisses modélise le bord de mer. On ajustera la
fenêtre d’affichage chaque fois que nécessaire.
1.
Construire un curseur où le paramètre a varie de 0 à 80.
2. Soit a un réel compris entre 0 et 80. On souhaite
construire des points dans le repère du logiciel comme
sur la figure ci-contre, tels que AB = CD = a et
AB+BC+CD=160 . Déterminer les coordonnées
des points A, B, C et D, puis les construire avec le logiciel.
3. Construire le rectangle ABCD (le logiciel affiche automatiquement les longueurs des
côtés et l’aire de ce rectangle).
4. Faire varier a et conjecturer la valeur de a rendant l’aire du rectangle ABCD maximale.
Quelles sont alors les dimensions du rectangle ABCD ?
Partie II : étude d'une fonction

 


1. Rappel : x est la longueur AB, en mètres. Sur quel intervalle I la valeur x varie-t-elle ?
2. Calculer, en fonction de x, la longueur et la largeur de la zone de baignade. Calculer, en
fonction de x, l’aire de la zone de baignade.
On appellera f la fonction qui à x associe l’aire, en m2 , de la zone de baignade. On
souhaite étudier les variations de f sur l’intervalle [0;80] .
3. Compléter le tableau suivant à l’aide de votre calculatrice :
x 0 10 20 30 40 50 60 70 80
f(x)
4. Obtention de la courbe représentative de f sur [0;80] avec le logiciel :
Ouvrir une nouvelle fenêtre et entrer l’expression de la fonction f. La courbe
représentative de f s’affiche alors automatiquement. Ajuster l’échelle sur les axes.
Tracer la courbe représentative de f sur votre feuille ou imprimer celle obtenue avec le
logiciel.
5. D’après le graphique, pour quelle valeur de x l’image f (x) est-elle la plus grande ? On
notera x 0 cette valeur.
On va montrer que pour tout x compris entre 0 et 80, f (x )⩽f (x 0).
6. Factoriser l’expression f (x )−f (x 0) . En déduire le signe de f (x )−f (x 0) .
7. Répondre au problème de Mitch.



Sagot :

bonsoir

on appelle B et C les deux bouées placées au large , A le point d'ancrage du filin sur la rive donc AB est la largeur et BC la longueur

périmètre = 2( AB +BC) =160 + BC (car il faut compter le rivage qui sert de longueur et qui est égal à BC )

2( AB + BC) = 160 +BC

2AB + 2BC -BC = 160

BC = 160 - 2AB

on appelle x la largeur AB on a alors

BC = 160 - 2x

Aire  = AB *BC 

aire f(x) = x(160-2x) = 160x - 2x² = -2x² +160x

aire maxi si x = (-b/2a) = -160 /-4 = 40 mètres

f(40) = (160*40 ) - ( 2 * 40² ) = 3200m²

la fonction f(x) n'est valable que sur l'intervalle [0;80] car sinon 

f(80) = 0 (donc pas de zone de baignade)

 

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.