Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonsoir, serait-il possible d'avoir un éclaircissement sur cet exercice merci beaucoup ! :)

Bonsoir Seraitil Possible Davoir Un Éclaircissement Sur Cet Exercice Merci Beaucoup class=

Sagot :

Réponse :

Explications étape par étape

a- Il suffit de résoudre l'équation z1 = z(alpha), ce qui équivaut à :

(racine de 3) / 2 + (1/2) = cos(alpha) + i*sin(alpha). Par identification des coefficients, tu as cos(alpha) = (racine de 3) / 2 et sin(alpha) = 1/2.

Ce sont des valeurs remarquables à connaître, on déduit immédiatement par le cercle trigonométrique, que alpha = pi/6.

Par définition, le module vaut |z1|² = Re(z1)² + Im(z1)² = cos(alpha)² + sin(alpha)² = 1, puis en prenant la racine carrée, on obtient que le module vaut 1.

b- z1² = [ cos(pi/6) + i*sin(pi/6) ]² = [ (racine de 3)/2 + i*(1/2) ]² = (3/4) + i*(racine de 3)/2 - (1/4) car i² = -1.

Finalement : z1² = (1/2) + i*(racine de 3)/2 = cos(pi/3) + i*sin(pi/3) = z2 (valeur remarquable du cercle trigo).

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.