Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, pouvez-vous m'aider pour un petit DM de math svp, merci de votre aide.

Déterminer l'équation réduite de Ta, tangente à Cf au point d'abscisse a :

Bonjour Pouvezvous Maider Pour Un Petit DM De Math Svp Merci De Votre Aide Déterminer Léquation Réduite De Ta Tangente À Cf Au Point Dabscisse A class=

Sagot :

bjr

a)

f(x) = x² + 4x + 1    et  a = 2

l'équation réduite de la tangente est de la forme y = αx + β

au point d'abscisse 2

α, coefficient directeur est égal à f'(2)

f'(x) = 2x + 4

f'(2) = 2*2 + 4 = 8

α = 8

d'où : y = 8x + β

Le point A, d'abscisse 2 de la courbe, a pour ordonnée

f(2) = 2² + 4*2 + 1 = 13

A(2 ; 13)

ce point est un point de la tangente

on calcule β en remplaçant x et y par les coordonnées de A dans l'équation de la tangente

13 = 8*2 + β

β = 13 - 16

β = -3

  y = 8x - 3

b)

le raisonnement est le même

f(x) = 1/(1 + x)   et  a = 1

y =  αx + β

calcul de α

dérivée : f'(x) = -1/(x + 1)²

f'(1) = -1/(1 + 1)² = -1/4  

α = - 1/4      

y = (-1/4) x +  β (1)

calcul de  β

si x = 1 alors f(x) = 1/2

on remplace x par 1 et y par 1/2 dans l'équation (1)

β = 3/4

c)

idem

la dérivée est f'(x) = 3x² - 2

f'0) = -2

f(0) = 0

β = 0