Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir, j'aide une amie dans son devoir de mathématiques logarithmes mais je ne suis pas sûr de mes réponses et je suis bloqué. Merci d'avance pour votre aide si vous pouvez y jeter un coup d’œil. (l'exercice c'est le 102)

Bonsoir Jaide Une Amie Dans Son Devoir De Mathématiques Logarithmes Mais Je Ne Suis Pas Sûr De Mes Réponses Et Je Suis Bloqué Merci Davance Pour Votre Aide Si V class=
Bonsoir Jaide Une Amie Dans Son Devoir De Mathématiques Logarithmes Mais Je Ne Suis Pas Sûr De Mes Réponses Et Je Suis Bloqué Merci Davance Pour Votre Aide Si V class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

J'espère qu'il n'est pas trop tard pour te répondre !!

1)

a)

g '(x)=1/x + 4x --->OK

b)

On ne te demande pas le tableau de signes de g(x) qui est faux d'ailleurs! Tu dis donc :

Sur ]0;+inf[ , 1/x > 0 et 4x > 0 donc g '(x) > 0

Variation :

x--------->0......................................................+inf

g '(x)---->||....................+................................

g(x)------->||...................C...............................

C=flèche qui monte.

c)

lim g(x) quand x tend vers 0+ :

ln(x)= -inf

x--->0+

lim (2x²)=0

x--->0+

Par somme :

lim g(x)=-inf+0=-inf

x--->0+

lim g(x) quand x tend vers +inf :

ln(x)= +inf

x--->+inf

lim (2x²)=+inf

x--->+inf

Par somme :

lim g(x)=+inf

x--->+inf

Donc sur ]0;+inf[ , la fct g(x) est continue et strictement croissante passant de valeurs négatives quand x tend vers -inf à des valeurs positives quand x tend vers +inf. D'après le théorème des valeurs intermédiaires , il existe un unique réel α tel que g(α)=0.

On entre la fct g(x) dans la calculatrice.

g(1)=-1 < 0 et g(2)=5.6931 > 0

g(1.1)=-0.4847 < 0 et g(1.2) = 0.06232 > 0

g(1.18) = -0.497  < 0 et g(1.19) = 0.00615 > 0

Donc :

α ≈ 1.19 à 0.01 près.

d)

x---------->-inf........................α.....................+inf

g(x)------->................-............0...........+..........

2)

a)

La dérivée de 2/x est -2/x².

lnx/x est de la forme u/v avec :

u=lnx donc u '=1/x

v=x donc v '=1

(u'v-uv')/v² =(1-lnx)/x²

Donc :

f '(x)=-2/x² - (1-lnx)/x²+2

On réduit au même déno :

f '(x)=(-2-1+lnx+2x²)/x²

f '(x)=(lnx+2x²-3)/x²

f '(x)=g(x)/x²

b)

Donc f '(x) est du signe de g(x).

Tableau de variation de f(x) :

x------------>0..............................α≈1.19.......................+inf

f '(x)------->...............-....................0.................+.............

f (x)------->..................D.................≈-1.08................C..............

D=flèche qui descend

C=flèche qui monte

caylus

Réponse :

Bonjour,

Explications étape par étape

Une autre méthode pour trouver une solution

Voir fichier excel joint

[tex]ln(x)+2x^2-3=0\ \Longrightarrow\ x=\sqrt{\dfrac{3-ln(x)}{2} }[/tex]

View image caylus
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.