Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Bonjour, vu que tu es en seconde, spécialité scientifique j'irai directement, mais pour l'heure si l'on arrive a écrire le nombre sous la forme 2k+1, alors on a montré que ce nombre est impair.
Explications étape par étape
1) Le développement est ok ( et tu aurais pu faire la deuxième, bon allons-y)
2) Considérons p un nombre entier impair.
p = 2n+1
=>p² = 4n² +4n +1
= 4(n²+n) +1
= 2[2(n²+n)] +1 on pose alors N=2(n²+n) qui sera bien un entier relatif
Ainsi, p² = 2N+1 qui est alors impair.
3) Soit q un nombre tel que q² = 2n (donc pair). q ne peut être impair car en fonctionnant par l'absurde si on suppose que le carré est pair mais le nombre impair, le raisonnement de la question 2) est contredit; d'où a est forcément pair.
4) En conclusion, si un nombre est pair son carré sera lui aussi pair.
#learnwithBrainly
#Nosdevoirs
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.