Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Réponse :
1) calculer les coordonnées du point I milieu de (AC)
I milieu de (AC) : I((4-2)/2 ; 3/2) = I(1 ; 3/2)
2) D(x ; y) tel que vec(AD) = 2 * vec(AB)
vec(AD) = (x + 2 ; y - 3)
vec(AB) = (- 3+2 ; 1 - 3) = (- 1 ; - 2) ⇒ 2*vec(AB) = (- 2 ; - 4)
x + 2 = - 2 ⇔ x = - 4 et y - 3 = - 4 ⇔ y = - 1
D(- 4 ; - 1)
3) soit E(x ; y) tel que vec(AE) = 1/2)vec(AC) - 2vec(AB)
vec(AE) = (x + 2 ; y - 3)
vec(AC) = (6 ; - 3) ⇒ 1/2)vec(AC) = (3 ; - 3/2)
-2 vec(AB) = (2 ; 4)
(x + 2 ; y - 3) = (3 ; - 3/2) + (2 ; 4) = (5 ; 5/2)
x + 2 = 5 ⇔ x = 3 et y - 3 = 5/2 ⇔ y = 11/2
Donc E(3 ; 11/2)
4) montrer que ADIE est un parallélogramme
il suffit de montrer que le vec(AD) = vec(EI)
vec(AD) = (- 4 + 2 ; - 1 - 3) = (- 2 ; - 4)
vec(EI) = (1 - 3 ; 3/2 - 11/2) = (- 2 ; - 4)
on a vec(AD) = vec(EI) donc ADIE est un parallélogramme
5) soit le point F(x ; y) tel que ABCF soit un parallélogramme
on écrit vec(AB) = vec(FC) ⇔ (- 1 ; - 2) = (4 - x ; - y)
⇔ 4 - x = - 1 ⇔ x = 5 et - y = - 2 ⇔ y = 2
F(5 ; 2)
6) vérifier que J milieu de (EF) a pour coordonnées (4 ; 15/4)
J milieu de (EF) : J((5+3)/2 ; (2 + 11/2)/2) = (8/2 ; 15/4) = (4 ; 15/4)
7) montrer que vec(AJ) = 3/4)vec(DC)
vec(AJ) = (4+2 ; 15/4 - 3) = (6 ; 3/4)
vec(DC) = (4 + 4 ; 1) = (8 ; 1) ⇒ 3/4)vec(DC) = (24/4 ; 3/4) = (6 ; 3/4)
donc on a bien vec(AJ) = 3/4)vec(DC)
Explications étape par étape
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.