Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
1) Un nombre pair se note 2n. et (2n)^2= 4n^2 = 2(2n^2). Donc si n est pair, n^2 l'est aussi.
2) On a vu dans la question précédente que le carré d'un nombre pair est pair. Donc, si le carré d'un nombre est impair, il ne peut pas être le carré d'un nombre pair et il est donc le carré d'un nombre impair.
3) Un nombre impair se note n2+1.
(2n+1)^2= 4n^2 + 1 + 4n = 2(2n^2+2n) +1.
4) Le carré d'un nombre pair est pair et le carré d'un nombre impair est impair donc si n^2 est pair, n est pair.
5) On en déduit que tout nombre pair donne un carré pair et tout nombre impair donne un carré impair
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.