Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour,
J’ai besoin d’aide pour un exercice de mon DM de maths, si quelqu’un aurait la gentillesse de m’aider sur cet exercice je lui serais énormément reconnaissant. J’ai joint une photo de mon exercice ci-dessous, merci d’avance.


Bonjour Jai Besoin Daide Pour Un Exercice De Mon DM De Maths Si Quelquun Aurait La Gentillesse De Maider Sur Cet Exercice Je Lui Serais Énormément Reconnaissant class=

Sagot :

Réponse: Bonjour,

1) [tex]\overrightarrow{CA}.\overrightarrow{CI}=(\overrightarrow{CB}+\overrightarrow{BA}).(\overrightarrow{CD}+\overrightarrow{DI})=\overrightarrow{CB}.\overrightarrow{CD}+\overrightarrow{CB}.\overrightarrow{DI}+\overrightarrow{BA}.\overrightarrow{CD}+\overrightarrow{BA}.\overrightarrow{DI}\\ \overrightarrow{CA}.\overrightarrow{CI}=0+||\overrightarrow{CB}|| \times ||\overrightarrow{DI}||+||\overrightarrow{BA}|| \times ||\overrightarrow{CD}||+0=1 \times \frac{1}{2}+1 \times 1=\frac{3}{2}[/tex].

2) On calcule d'abord CA.

On considère le triangle CAD rectangle en D.

D'après le théorème de Pythagore:

[tex]CA^{2}=CD^{2}+DA^{2}=1^{2}+1^{2}=1+1=2\\CA=\sqrt{2}[/tex].

On calcule maintenant CI.

On considère le triangle CDI rectangle en D.

D'après le théorème de Pythagore:

[tex]CI^{2}=CD^{2}+DI^{2}=1^{2}+(\frac{1}{2})^{2}=1+\frac{1}{4}=\frac{5}{4}\\CI=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}[/tex].

3) On a:

[tex]\overrightarrow{CA}.\overrightarrow{CI}=||\overrightarrow{CA}|| \times ||\overrightarrow{CI}|| \times \cos(\overrightarrow{CA}, \overrightarrow{CI})=\sqrt{2} \times \frac{\sqrt{5}}{2} \times \cos(\widehat{ACI})=\frac{\sqrt{5}}{\sqrt{2}} \times \cos(\widehat{ACI})[/tex].

Or d'après la question 1):

[tex]\overrightarrow{CA}.\overrightarrow{CI}=\frac{3}{2}[/tex].

Donc:

[tex]\frac{\sqrt{5}}{\sqrt{2}} \times \cos(\widehat{ACI})=\frac{3}{2}\\ \cos(\widehat{ACI})=\frac{3}{2} \times \frac{\sqrt{2}}{\sqrt{5}}=\frac{3}{\sqrt{2} \times \sqrt{5}}=\frac{3}{\sqrt{10}}[/tex].

4) On a:

[tex]\widehat{ACI}=\cos^{-1}(\frac{3}{\sqrt{10}}) \approx 18,4 \°[/tex].

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.