Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour ! Je dois faire cet exercice pour demain et je coince un peu ... si vous pouviez m'aider ce serait super merciii


Bonjour Je Dois Faire Cet Exercice Pour Demain Et Je Coince Un Peu Si Vous Pouviez Maider Ce Serait Super Merciii class=

Sagot :

Réponse :

Bonjour,

1.

f'(x) = ln2 * 1 - 2* 1/x

or ln2 - 2/x 0

-2/x ≥ -ln2

2/x ≤ ln2

x/2 ≥1/ln2

x  ≥ 2 / ln2

Càd que la dérivée est positive lorsque x est plus grand ou égal à 2/ln2 donc dans l'intervalle [2/ln2 ; + infini[

2. Je ne sais pas pour cette partie.

3. f(x) = x((ln(2)  - 2ln(x)/x)

Par croissance comparée en plus l'infini on peu déterminer que 2ln(x)/x tend vers 0 car la fonction x croît beaucoup plus vite que la fonction logarithme. Il s'ensuit que l'ensemble tend vers + infini.

Pour compléter la réponse précédente :

2) On calcule f(4) = 4*ln(2) - 2ln(4) = 0

Comme la fonction est croissante sur [4; +∞[ (4 > 2/ln(2)), on peut écrire :

Si a ≤ b ≤ c, alors f(a) ≤ f(b) ≤ f(c), avec a, b, c ∈ [4; +∞[.

On en déduit que pour x ≥ 4, f(x) ≥ 0

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.