Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

On considère la fonction F définie sur [0 ; π/2[ par : F(t)=7-3tan(t)+6/(cos(t)). On rappelle que pour tout t appartient à l'intervalle [0 ; π/2[, tan(t)=(sin(t))/(cos(t)).
Montrer que la dérivé de la fonction F est F'(t)=(-3+6*sin(t))/cos²(t).

Help me ! :(



Sagot :

Bah tu dois juste dériver chaque expression:

 

(u/v)' = (u'v-uv')/v²

 

(constante)' = 0

 

(sin(t))'= cos(t)

(cos(t))'= - sin(t)

 

D'où dérivée de tan(t) = 1/cos²(t) 

Démonstration complète ici : http://www.defl.ca/~gastondube/06transcendantes/03trigonometrique/07derive_tangente.html

 

donc (-3tan(t))' = -3/cos²(t)

et (7)' =0

et (6/(cos(t)))'= 6sin(t)/cos²(t)

 

Tu aditionne chaque expression et tu met sous le même dénominateur et tu obtient le résultat souhaité.

Voili voilou

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.