Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

(feuille jointe) Bonjour je suis coincée sur mon DM de maths où on nous dit: sachant que vos (alpha+beta)= cos(alpha) cos(beta) - sin(alpha) sin (beta), montrer que: cos puissance2(x) - sin puissance2 (x)

Feuille Jointe Bonjour Je Suis Coincée Sur Mon DM De Maths Où On Nous Dit Sachant Que Vos Alphabeta Cosalpha Cosbeta Sinalpha Sin Beta Montrer Que Cos Puissance class=

Sagot :

Salut !

cos(2x) = cos(x+x)

En utilisant la formule qui t'es donnée, tu obtiens :

cos(x+x) = cos(x)cos(x) - sin(x)sin(x) = cos²(x) - sin²(x)

On a alors :

cos²(x) = cos(2x) + sin²(x)

Or, sin²(x) = 1 - cos²(x)        (cos²(x) + sin²(x) = 1)

Donc cos²(x) = cos(2x) + 1 - cos²(x)

⇔ 2cos²(x) = 1 + cos(2x)

⇔ cos²(x) = (1 + cos(2x))/2

Ensuite, on remplace x par π/8

cos²(π/8) = (1 + cos(2*π/8))/2 = (1 + cos(π/4))/2

= (1 + √2/2)/2

= (2 + √2)/4

Donc cos(π/8) = √(cos²(π/8)) = √((2 + √2)/4) = √(2 + √2)/2

sin²(π/8) = 1 - cos²(π/8) = 1 - (2 + √2)/4

⇒ sin(π/8) = √(2 - √2)/2