Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour qui peux m’aider pour cet exercice merci d’avance je n’y arrive pas et ces pour demain matin

Bonjour Qui Peux Maider Pour Cet Exercice Merci Davance Je Ny Arrive Pas Et Ces Pour Demain Matin class=

Sagot :

Réponse :

Bonjour!

1. x ∈ ]-3;5] signifie que -3 < x ≤ 5

-3*(-3) > -3x ≥ 5*-3

9 > -3x ≥ -15

9+4 > -3x+4 ≥ -15+4

13 > -3x+4≥ -11

2. On pose -2 ≤ 2x-5 < 7

-2+5 ≤ 2x < 7+5

3 ≤ 2x < 12

3/2 ≤ x < 6

3)

a)

3/2 - 5x/4 = (5-5x) / 3

-5x/4 = 5/3 - 5x / 3 - 3/2

-5x/4 + 5x/3 = 5*2 / 3*2 - 3*3 / 2*3

-5x*3 / 4*3 + 5x*4 / 3*4 = 10 -9 / 6

-15x+ 20x / 12 = 1/6

5x / 12 = 1/6

5/ 12 * x = 1/6

x = (1/6) / (5/12)

x = 1/6 * 12/ 5

x = 12 / 30 = 6* 2 / 6*5 = 2/5

b) x² - 13 format a² - b² = (a-b)(a+b)

d'où x² - 13 = (x- √13) (x+ √13)

donc pour (x- √13)(x+ √13)=0

Il existe deux solutions : soit x = √13 soit x = - √13

c) 3x(x+3) - (x+3)² = 0

(x+3) (3x - x -3) = 0

(x+3)(2x-3) = 0

Donc soit x+3 = 0

Et donc x = -3

Soit 2x-3 = 0

et x = 3/2

S = {-3 ; 3/2}

d) 2(x+1) + x² + 2x + 1 = 0

2x + 2 + x² + 2x + 1 = 0

x² + 4x + 3 = 0

polynôme. Δ = b² - 4ac = 16 - 4* 3 = 16 - 12 = 4 donc deux solutions car Δ positif

√Δ= 2

x1 = -4 - 2 / 2 =-6 / 2 = -3

x2 = -4 +2 / 2 = -2 / 2 = -1

Donc au final on peu factoriser ainsi : a(x-x1)(x-x2) avec a = 1

(x-(-3))(x-(-1)) = 0

(x+3)(x+1) = 0

Deux solutions : x = -3 et x = -1.

e) Système (gardez toujours les accolades et mettez le signe d'équivalence derriere eux à chaque fois que les deux lignes d'inéquations se renouvellent) Donc :

3x -1 >= 5x + 4

6x + 7 < 3x - 8

(je n'ai pas mis l'accolade ne l'oubliez pas et ajotuez le signe d'équivalence <=> derrière chaque accolade)

3x -5x >= 4 +1

6x - 3x < -8 - 7

-2x >= 5

3x < -15

-x ≥ -5/2

x < -15/3

x ≤ 5/2

x < -15/3

Donc au final x € ]-infini ; 5/2]

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.