Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour qui peux m’aider pour cet exercice merci d’avance je n’y arrive pas et ces pour demain matin

Bonjour Qui Peux Maider Pour Cet Exercice Merci Davance Je Ny Arrive Pas Et Ces Pour Demain Matin class=

Sagot :

Réponse :

Bonjour!

1. x ∈ ]-3;5] signifie que -3 < x ≤ 5

-3*(-3) > -3x ≥ 5*-3

9 > -3x ≥ -15

9+4 > -3x+4 ≥ -15+4

13 > -3x+4≥ -11

2. On pose -2 ≤ 2x-5 < 7

-2+5 ≤ 2x < 7+5

3 ≤ 2x < 12

3/2 ≤ x < 6

3)

a)

3/2 - 5x/4 = (5-5x) / 3

-5x/4 = 5/3 - 5x / 3 - 3/2

-5x/4 + 5x/3 = 5*2 / 3*2 - 3*3 / 2*3

-5x*3 / 4*3 + 5x*4 / 3*4 = 10 -9 / 6

-15x+ 20x / 12 = 1/6

5x / 12 = 1/6

5/ 12 * x = 1/6

x = (1/6) / (5/12)

x = 1/6 * 12/ 5

x = 12 / 30 = 6* 2 / 6*5 = 2/5

b) x² - 13 format a² - b² = (a-b)(a+b)

d'où x² - 13 = (x- √13) (x+ √13)

donc pour (x- √13)(x+ √13)=0

Il existe deux solutions : soit x = √13 soit x = - √13

c) 3x(x+3) - (x+3)² = 0

(x+3) (3x - x -3) = 0

(x+3)(2x-3) = 0

Donc soit x+3 = 0

Et donc x = -3

Soit 2x-3 = 0

et x = 3/2

S = {-3 ; 3/2}

d) 2(x+1) + x² + 2x + 1 = 0

2x + 2 + x² + 2x + 1 = 0

x² + 4x + 3 = 0

polynôme. Δ = b² - 4ac = 16 - 4* 3 = 16 - 12 = 4 donc deux solutions car Δ positif

√Δ= 2

x1 = -4 - 2 / 2 =-6 / 2 = -3

x2 = -4 +2 / 2 = -2 / 2 = -1

Donc au final on peu factoriser ainsi : a(x-x1)(x-x2) avec a = 1

(x-(-3))(x-(-1)) = 0

(x+3)(x+1) = 0

Deux solutions : x = -3 et x = -1.

e) Système (gardez toujours les accolades et mettez le signe d'équivalence derriere eux à chaque fois que les deux lignes d'inéquations se renouvellent) Donc :

3x -1 >= 5x + 4

6x + 7 < 3x - 8

(je n'ai pas mis l'accolade ne l'oubliez pas et ajotuez le signe d'équivalence <=> derrière chaque accolade)

3x -5x >= 4 +1

6x - 3x < -8 - 7

-2x >= 5

3x < -15

-x ≥ -5/2

x < -15/3

x ≤ 5/2

x < -15/3

Donc au final x € ]-infini ; 5/2]