Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Réponse:
f est de la forme u/v avec
u(x) = 3x+4
u'(x) = 3
v(x) = 4x²+4
v'(x) = 8x
f' = (u'v-uv')/v²
f'(x) = [3(4x²+4)-8x(3x+4)]/(4x²+4)²
f'(x) = (12x²+12-24x²-32x)/(4x²+4)²
f'(x) = (-12x²-32x+12)/(4x²+4)²
f'(x) = -4(3x²+8x-3)/(4x²+4)²
2a. y=f'(-½)(x+½)+f(-½)
f'(-½) = 1
f(-½) = ½
y = 1(x+½)+½
y=x + 1
2b. à tracer
3.
on cherche f'(x) > 0
(4x²+4)² > 0 quel que soit x de R
-4 < 0
on cherche donc 3x³+8x-3 < 0
∆= 100 => 2 racines
x1 = -3
x2 = ⅓
le polynome est du signe de -a entre ses racines
donc 3x²+8x-3 < 0 sur ]-3;⅓[
Ainsi f'(x) > 0 sur ]-3;⅓[
Or f'(x) est la pente des tangentes à Cf au point d'abscisse x. Les tangentes sont croissantes si leur coefficient directeur est strictement positif soit sur sur ]-3;⅓[.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.