Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
bjr
1- Soit p et q deux entiers positifs tels que pq = N . Si p est strictement supérieur à √N , que peut-on dire de q ? Le démontrer par l’absurde.
hypothèse
p > √N
conclusion
on veut montrer que q < √N
supposons que q > √N
alors on a p > √N et
q > √N
propriété :
en multipliant membre à membre deux inégalités dont tous les membres sont positifs on obtient une nouvelle inégalité, de même sens que les deux premières.
en multipliant p > √N
et q > √N membre à membre
on obtient pq > √N√N
pq > N
or ceci est en contradiction avec l'hypothèse pq = N
c'est donc que q n'est pas strictement supérieur à √N
comme N n'et pas nul
q est strictement inférieur à √N .
on a la conclusion q < √N
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.