Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour je suis en classe de seconde et je bloque sur ces 2 exercices de Maths :
Soit A(6 ; 1), B(10 ;-1), C(7 ; -3), et D(3 ; -1) quatre points dans un repère du plan.
a) Calculer les coordonnées des vecteurs AB et DC.
b) Que peut on en déduire sur la nature du quadrilatère ABCD?

On considère (O,i,j) un repère du plan.
Soit les points A(5 ; -2) et B(-3 ; -4).
Calculer les coordonnées du point C tel que ABOC soit un parallélogramme.

Merci d'avance pour votre aide.


Sagot :

Réponse :

Bonjour

Explications étape par étape

1)

a)

AB(10-6;-1-1) donc AB(4;-2)

DC(7-3;-3-(-1)) donc DC(4;-2)

b)

Donc en vecteurs :

AB=DC

qui prouve que ABCD est un parallélogramme.

2)

ABOC est un parallélogramme si et seulement si AB = CO (en vecteurs)

AB(-3-5;-4-(-2)) soit AB(-8;-2)

Soit C(x;y)

CO(0-x;0-y) soit OC(-x;-y)

AB=CO donne :

-x=-8 et -y=-2

x=8 et y=2

Donc C(8;2)

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.