Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, jai un dm de maths de première sur les suites , pouvez-vous m’aider s’il vous plaît? Perrine place 8 000 € sur un compte dont le taux d’intérêts cumulés est de 3,8 %. Chaque année, 76 € de frais de gestion sont prélevés. Pour tout entier n, on note Cn le capital de l’année n. On suppose que l’année 0 est l’année du premier dépôt.

1. On cherche le capital dont disposera Perrine dans 10 ans.
a. Établir une relation de récurrence pour définir la suite Cn.

b. Soit Dn la suite définie pour tout entier n par
Dn =Cn −2000.

Prouver que cette suite est géométrique et donner sa raison et son premier terme.

c. En déduire une expression de C n en fonction de n et répondre au problème posé.

2. Combien d’années seront nécessaires pour que le capital augmente de 50 % ?

Sagot :

Réponse :

salut

a)

u(0)= 8000

intérêts +3.8%

frais 76 €

C(n+1)= 1.038C(n)-76

b) D(n)= C(n)-2000

D(n+1)=C(n+1)-2000

        = 1.038C(n)-76-2000

       = 1.038C(n)-2076

        = 1.038( C(n)-(2076/1.038))

       = 1.038( C(n)-2000)

D(n) est une suite géométrique de raison 1.038 D(n)

expression de D(n)

D(n)= D(0) * q^n

calcul de D(0) => 8000-2000=6000

D(n)= 6000 * 1.038^n

c) expression de C(n)

D(n)= C(n)-2000

D(n)+2000= C(n)

C(n)= 6000 * 1.038^n+2000

nombre d'années nécessaire pour que le capital augmente de 50%

si le capital augmente de 50% il sera de 12000 €

on résout

6000 * 1.038^n+2000>=12000

6000 * 1.038^n >= 10000

1.038^n >= 10000/6000

1.038^n>= 1.6666

n>= ln(1.6666)/ln(1.038)

n>= 13.69

il faudra 14 ans pour gagner 50% du capital

Explications étape par étape