Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour, j'ai besoin d'aide pour le B et C svp

A) Démontrer l'égalité : a³-b³ = (a-b) (a² + ab + b²)
On développe (a-b)(a²+ab+b²) :
(a-b)(a²+ab+b²) = a³+a²b+ab²-a²b-ab²-b³ = a³ - b³
On a donc bien a³-b³ = (a-b)(a²+ab+b²)
B) En déduire que, pour tout nombre entier naturel n, le nombre (n + 3)³ - n³ est un multiple de 9.

C) Démontrer de même que, pour tout nombre entier k, (n + 3k)³ - n³ est un multiple de 3^k+1.

Merci.


Sagot :

Réponse : Ci-joint le raisonnement pour la question B), je pense que la question C) demande le même raisonnement, je te laisse le faire.

N'hésite vraiment pas si tu as des questions ;D

Explications étape par étape

View image jonny95
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.