Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour alors je suis en 1ère et j'ai un DM de math je l'ai commencé mais je n'arrive point à faire j'aimerais de l'aide j'espère que ce n'est pas trop demander, je vous remercie d'avance.

Voici l'énoncé :
Un joueur de rugby se situe à une distance de 20 mètres des poteaux. Il souhaite que le ballon passe au-dessus de la située à 3 mètres du sol.
La trajectoire du ballon peut-être modélisée par la fonction h définie par : h(x) = a x² + b x + c, où x représente la distance (en m) parcourue par la projection orthogonal du ballon sur le sol et h(x) la hauteur (en m) du ballon.

QUESTIONS :
PARTIE A
1. On sait que h(0) = 0, déterminer c.
2. Le joueur décide d'orienter son tir de telle sorte qu'au départ du ballon, l'angle formé par la tangente de la trajectoire avec le sol fait pour mesure 45°. On a alors h'(0)=1
a) Calculer h'(x)
b) On sait que h'(0)= 1, déterminer b.
3. Il sait que le ballon retouchera le sol à 25mètres de lui.
a) Traduire cette nouvelle information en recopiant et en complétant h(...)= ...
b) En déduire la valeur de a.
PARTIE B
On admet que h(x) = - 0,04 x² + x pour x € [0 ; 25]
1. Calculer h'(x)
2. Étudier le signe de h'(x) et dresser le tableau de variations de h sur [0;25 ]
3. Quelle est la hauteur maximale atteinte par le ballon? Pour quelle valeur de x?
4. Les poteaux se situent à 20 mètres du joueur.
a) Quelle est la hauteur de ballon à cet endroit ?
b) Le joueur réussit il son tir?


Sagot :

Bonjour,

h(x) = ax² + bx + c

Partie A :

1)  h(0) = 0  donc c = 0

2a) Coeff tangente au point d'abscisse 0  h ' (0) = 1

h ' (x) = 2ax + b

b)

h ' (0) = b = 1

3a) Le ballon retouchera le sol à 25 mètres donc

h(25) = 0

h(25) = a(25)² + 1(25) + 0 = 0

            625a + 25 = 0

a = -25 / 625

a = -0.04

h(x) = -0.04x² + x

Partie B :

h(x) = -0.04x² + x      pour x ∈ [ 0 ; 25 ]

1)

h' (x) = -0.08x + 1

2)

h ' (x)  positive    sur [ 0 ; 12.5 [       donc h(x)  croissante

h ' (x) = 0    pour x = 12.5                 donc h(12.5) = 6.25 = maximum

h ' (x) négative sur  ] 12.5 ; 25 ]      donc h(x) décroissante

3)

h (x) est maxi pour h' (x) = 0    donc x = 12.50   et h(12.50) = 6.25

4a)

h(20) = 4

b) comme h(20) > 3  le tir est réussi

Bonne journée    

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.