Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour pouvez-vous m’aider pour cet exercice s’il vous plaît ? :) Merci beaucoup

Bonjour Pouvezvous Maider Pour Cet Exercice Sil Vous Plaît Merci Beaucoup class=

Sagot :

1)

Soit n un nombre pair,

un nombre impair sera n+1

donc (n+1)^2 = n^2 + 2n + 1

ici n^2 est pair, 2n est pair, 1 est impair donc (n+1)^2 est impair

soit n' un autre nombre pair,

un nombre impair sera n' + 1

donc (n'+1)^2 = n'^2 + 2n' + 1

ici n'^2 est pair, 2n' est pair, 1 est impair donc (n'+1)^2 est impair

(n+1)^2 + (n'+1)^2

=(n^2 + 2n + 1) + (n'^2 + 2n' + 1)

= n^2 + 2n + n'^2 + 2n' + 2

2 étant pair, on a une somme de termes pair, soit un résultat pair.

2) Pour celui là je suis pas sûr du tout donc une autre réponse serait la bienvenue.

Cependant partons du principe qu'un nombre premier, ( a part 2, mais on s'en fiche puis que p > 2 ) est impair, (par ce que sinon il est divisible par deux et il ne serait pas premier)

donc p + 5 = p + 4 + 1

ici p + 4 est toujours impair, puisque pour n et n' deux nombres pairs, n + 1 est impair et n + 1 + n' est encore impair car n + n' est pair.

mais p + 4 + 1 est pair, donc au moins divisible par deux.

Or un nombre premier est divisible seulement par 1 ou par lui même, donc ce p + 5 n'est pas premier.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.