Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Svp je n'arrive pas à résoudre la deuxième question de mon exercice.


Exercice:On veut montrer que le carré d'un nombre impair est un nombre impair.

1) Montrer que (2n + 1)^2 = 4n+ 4n + 1 quel que soit le nombre entier naturel.

2) Etudier la parité des termes 4n^2 + 4n + 1 puis conclure.


Sagot :

Réponse :

bonsoir

Explications étape par étape

un nombre impair est du type

2a+1

1)

(2n+1)²

(a+b)²=a²+2ab+b²

(2n+1)²=4n²+2n+1

2)

4n²+2n+1

2(2n²+n)+1

a=2n²+n

4n²+2n+1=2(a)+1

4n²+2n+1 est impair

(2n+1)² est impair

le carré d'un nombre impair est impair