Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse : Bonsoir,
4) On peut conjecturer deux propriétés:
i) [tex]\displaystyle \tan \widehat{a}=\frac{\sin \widehat{a}}{\cos \widehat{a}}[/tex].
Démontrons cette propriété:
[tex]\displaystyle \frac{\sin \widehat{a}}{\cos \widehat{a}}=\frac{\frac{CB}{AC}}{\frac{AB}{AC}}=\frac{CB}{AC} \times \frac{AC}{AB}=\frac{CB}{AB}=\tan \widehat{a}[/tex].
ii) [tex](\cos \widehat{a})^{2}+(\sin \widehat{a})^{2}=1[/tex].
Démontrons cette propriété:
[tex](\cos \widehat{a})^{2}+(\sin \widehat{a})^{2}=\frac{AB^{2}}{AC^{2}}+\frac{CB^{2}}{AC^{2}}=\frac{AB^{2}+CB^{2}}{AC^{2}}[/tex].
Comme le triangle ABC est rectangle en B, alors d'après le théorème de Pythagore, [tex]AC^{2}=AB^{2}+CB^{2}[/tex].
Donc:
[tex](\cos \widehat{a})^{2}+(\sin \widehat{a})^{2}=\frac{AB^{2}+CB^{2}}{AC^{2}}=\frac{AC^{2}}{AC^{2}}=1[/tex].
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.