Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour,

Je suis vraiment bloqué sur ce probleme de math et il est a rendre pour la rentré, merci beaucoup a ceux qui m'aideront !!!
Je suis en Second.
Voici le probleme:


1. Pour tous nombres réels x et c, développer (x + c)²


2. En posant x = a + b, où a et b sont deux nombres réels, en déduire la forme développée et réduite de (a + b + c)²


Nabil a remarqué que le produit de quatre nombres entiers consécutifs augmenté de 1 sem-blait toujours être un « carré parfait », c’est-à-dire le carré d’un nombre entier.


a. Illustrer la conjecture de Nabil sur deux exemples.


b. Développer et réduire le produit de quatre nombres entiers consécutifs augmenté de 1, en notant x le plus petit de ces quatre nombres.


c. Grâce à la question 2, développer (x² + 3x + 1)².


d. Conclure.


Sagot :

Réponse : Bonjour pour que les personnes t'aide il faut que tu montres la 1 et la 2 pour ainsi te corriger et comprendre l'exercice .

Explications étape par étape

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.