Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
Pour que le triangle ABM soit isocèle en M il faut que les distance AM et BM soit identiques, donc on les calcule :
[tex]AM=\sqrt{(xm-xa)^{2}+(ym-ya)^{2}}[/tex]
[tex]BM=\sqrt{(xm-xb)^{2}+(ym-yb)^{2}}[/tex]
Tu remplace :
[tex]AM=\sqrt{(x+5)^{2}+(2+1)^{2}}[/tex]
[tex]BM=\sqrt{(x-4)^{2}+(2+1)^{2}}[/tex]
On cherche x pour que AM = BM on a l'equation :
[tex]\sqrt{(x+5)^{2}+(2+1)^{2}}=\sqrt{(x-4)^{2}+(2+1)^{2}}[/tex]
[tex](x+5)^{2}+(2+1)^{2}=(x-4)^{2}+(2+1)^{2}[/tex]
Ensuite je te laisse chercher les valeurs de x à partir de là
C'est beaucoup trop calculatoir pour que je te le fasse a l'ordi alors je te laisse faire, je suis sûr que t'y arrivera ;)
Pour que le triangle soit rectangle en A, tu utilise le même principe de distance sauf que cette fois tu utilise le théorème de pythagore
AM²+AB²= BM²
Pour que le triangle soit rectangle en B, tu utilise le même principe de distance
BM²+BA²= AM²
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.