Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Explications étape par étape:
2- Ici, je pense que tu as su y parvenir, posons a=b=1 alors ab = 1 et f(ab) = f(1) = f(a) + f(b) = 2*f(1) donc nécessairement f(1) = 0.
Bien sûr, tu pourrais te dire : "Mais si je prends a = 2 et b = 1/2, ça fait ab = 1 et f(ab) = f(1) = f(2) + f(1/2)". Malheureusement ça n'apporte aucune info supplémentaire. Cette égalité est vraie, puisque on travaille sur un ensemble de réels, mais elle est obsolète. Si f(1) était différent de 0, alors on aurait un problème pour l'égalité a=b=1.
B) Ici, g est définie comme étant une fonction composée telle que g(x) = f(ax). En effet, on remarque astucieusement que f(ax) - f(x) = f(a) qui est constante. Ceci équivaut à g(x) - f(x) = f(a). g est donc dérivable sur l'intervalle de dérivabilité de f (on ne le connaît pas, mais on suppose f dérivable, sur ]0;+inf[. On devine que derrière la fonction f se cache le logarithme néperien, qui est dérivable sur ]0;+inf[) telle que g'(x) - f'(x) = f'(a) = 0 donc g'(x) = f'(x).
D'autre part, par les formules usuelles de composition de dérivée, on sait que : g'(x) = (f(ax)) ' = (ax)' *f'(ax) = a*f'(ax).
C) Posons x = 1, l'équation précédente devient : a*f'(a) = f'(1) donc f'(a) = f'(1) /a = k/a en posant k = f'(1).
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.