Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjours , je ne comprend pas les exo suivant 1) resoudre dans R sin x = cos ( pi/2 - x ) ( je trouve - l'infini ; + l'infini ) 2) dans l'internalle - pi ; + pi ; (2x + pi/6 ) = rac3/2



Sagot :

1)On résoud dans IR, on cherche donc toutes les solutions de :

[tex]sin(x)=cos(\frac{\pi}{2}-x)[/tex]

Tu dois tracer un cercle trigonométrique afin d'identifier tes solutions. On voit tout de suite que [tex]sin(x)=cos(\frac{\pi}{2}-x)[/tex] pour tout x appartenant à IR.

Donc la solution est l'intervalle ]-infini;+infini[ ou alors S=IR

 

2)On résoud dans l'intervalle [-;] l'équation [tex] (2x + \frac{\pi}{6} ) = \sqrt{\frac{3}{2}}[/tex] (pourquoi cet intervalle ?? N'a tu pas oublié de mettre un sin ou cos devant (2x+/6)...obligé :P)

Donc si tu as un sin ou cos tu trace le cercle trigo et tu dois savoir que les solutions(en général il y en à deux) sont 

si tu a un sin :  /3    et     2/3 

si tu as un cos : /6   et     -/6 

 

Sinon si ce n'était pas une erreur :

[tex](2x + \frac{\pi}{6} ) = \sqrt{\frac{3}{2}}<=> 2x=\sqrt{\frac{3}{2}}- \frac{\pi}{6}<=>x=\sqrt{\frac{3}{8}}- \frac{\pi}{12}[/tex]

voili voilou

 

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.