Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
f(x)=ax³+bx²+cx+d
O(0;0)∈C => f(0)=0 => a(0³)+b(0)²+c(0)+d=0 => d=0 (E1)
A(4;0,5)∈C => f(4)=0,5 => a4³+b4²+c4 +d=0,5 or d=0 donc 64a+16b+4c=0,5 (E2)
f'(x)=3ax²+2bx+c
Une tangente horizontale à une courbe => coefficient directeur nul : f'(x)=0
donc tangente horizontale en O => f'(0)=0 => 3a(0²)+2b(0)+c=0 => c=0 (E3)
et tangente horizontale en A => f'4)=0 => 3a(4²)+2b(4)+c=0 => 48a+8b=0 => 8(6a+b)=0
=> 6a+b=0 (E4)
Rappel, on obtient 4 équations à 4 inconnues :
(E1) : d=0
(E3) : c=0
(E2) : 64a+16b+4c=0,5 => 64a+16b=0,5
(E4) : 6a+b=0
d'après (E4) : b=-6a
et on le remplace dans (E2) : 64a+16(-6a)=0,5 => 64a-96a=1/2 => -32a=1/2 => a=(1/2)/(-32) => a =1/(2(-32))=1/-64=-1/64 => a=-1/64
d'où b=-6a=-6(-1/64)=6/64=3/32
donc f(x)=-x³/64+3x²/32
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.