Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Bonjour,
Tout d'abord il faut faire une figure; c'est plus facile pour visualiser la situation.
1) Démontrer que le triangle ABM est rectangle en M:
Si ABM est rectangle en M alors il vérifie la réciproque du théorème de Pythagore; à savoir:
[tex]AM^2 + BM^2= AB^2[/tex]
Or:
AM = 2,4 cm
BM = 3,2 cm
AB = 4 cm
Vérifions:
[tex]AM^2+BM^2=AB^2\\ \sqrt{AM^2+BM^2} = AB\\ \sqrt{2,4^2+3,2^2} = 4\\ \sqrt{16} = 4\\ 4=4\\ [/tex]
→ Réciproque vérifiée donc: ABM est un triangle rectangle en M
En déduire la longueur MC:
Comme ABM est rectangle en M cela implique également que le triangle CBM est rectangle en M.
On va ré-utiliser le théorème de Pythagore pour trouver la longueur MC:
Soit:
[tex]BM^2 + MC^2 = BC^2\\ \Rightarrow MC^2 = BC^2 - BM^2[/tex]
Or:
BM = 4,2 cm
BC = 6,8 cm
[tex]MC^2 = BC^2 - BM^2\\ MC = \sqrt{BC^2 - BM^2}\\ MC = \sqrt{6,8^2-3,2^2}\\ MC = 6[/tex]
→ La longueur de MC est 6 cm
2) Le triangle ABC est-il rectangle? justifier la réponse
Si ABC est un triangle rectangle; alors il vérifie la réciproque du théorème de Pythagore; à savoir:
[tex]AB^2 + BC^2 = AC^2[/tex]
Or:
AB = 4 cm
BC = 6,8 cm
AC = 2,4 + 6 = 8,4 cm
Vérifions:
[tex]AB^2 + BC^2 = AC^2\\ \sqrt{AB^2 + BC^2} = AC\\ \sqrt{4^2+6,8^2} = 8,4\\ 7,9 \neq 8,4[/tex]
→ En conclusion; le triangle ABC n'est pas rectangle en B.
Tout d'abord il faut faire une figure; c'est plus facile pour visualiser la situation.
1) Démontrer que le triangle ABM est rectangle en M:
Si ABM est rectangle en M alors il vérifie la réciproque du théorème de Pythagore; à savoir:
[tex]AM^2 + BM^2= AB^2[/tex]
Or:
AM = 2,4 cm
BM = 3,2 cm
AB = 4 cm
Vérifions:
[tex]AM^2+BM^2=AB^2\\ \sqrt{AM^2+BM^2} = AB\\ \sqrt{2,4^2+3,2^2} = 4\\ \sqrt{16} = 4\\ 4=4\\ [/tex]
→ Réciproque vérifiée donc: ABM est un triangle rectangle en M
En déduire la longueur MC:
Comme ABM est rectangle en M cela implique également que le triangle CBM est rectangle en M.
On va ré-utiliser le théorème de Pythagore pour trouver la longueur MC:
Soit:
[tex]BM^2 + MC^2 = BC^2\\ \Rightarrow MC^2 = BC^2 - BM^2[/tex]
Or:
BM = 4,2 cm
BC = 6,8 cm
[tex]MC^2 = BC^2 - BM^2\\ MC = \sqrt{BC^2 - BM^2}\\ MC = \sqrt{6,8^2-3,2^2}\\ MC = 6[/tex]
→ La longueur de MC est 6 cm
2) Le triangle ABC est-il rectangle? justifier la réponse
Si ABC est un triangle rectangle; alors il vérifie la réciproque du théorème de Pythagore; à savoir:
[tex]AB^2 + BC^2 = AC^2[/tex]
Or:
AB = 4 cm
BC = 6,8 cm
AC = 2,4 + 6 = 8,4 cm
Vérifions:
[tex]AB^2 + BC^2 = AC^2\\ \sqrt{AB^2 + BC^2} = AC\\ \sqrt{4^2+6,8^2} = 8,4\\ 7,9 \neq 8,4[/tex]
→ En conclusion; le triangle ABC n'est pas rectangle en B.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.