Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

J'ai un problème avec 2 exercices de mon DM vous les trouverez en pièces jointes, je suis en seconde et nours n'avons pas encore vu toutes ces choses là

Merci d'avance à ce qui pourront m'aider :)



Jai Un Problème Avec 2 Exercices De Mon DM Vous Les Trouverez En Pièces Jointes Je Suis En Seconde Et Nours Navons Pas Encore Vu Toutes Ces Choses Là Merci Dava class=

Sagot :

Exercice 1


1)a)HM²=OM²-OH² avec OM²=(xM-xO)²+(yM-yO)²=(x-0)²+(-x²+4-0)²=x²+(4-x²)²

donc HM²=x²+(4-x²)²-x²=(4-x²)² => HM=4-x²

 

b)A(OHM)=OH*HM/2=x(4-x²)/2

 

2)f(x)=A(OHM) d'où f(x)=x(4-x²)/2

étude de la variation de f : calcul de sa dérivée f'

f'(x)=(4-x²)/2+x(-2x)/2=(4-x²-2x²)/2=(4-3x²)/2=(2²-(√3x)²)/2=(2-√3x)(2+√3x)/2

f'(x) s'annule en x=-2/√3 et en 2/√3 or seule 2/√3 sera prise en compte car x>0

d'où f'(2/√3)=0 donc f admet un extremum en 2/√3

Faire un tableau de signe pour f'(x) et ensuite un tableau de variation de f

On obtient que pour :

x∈[0,2/√3[, f'(x)>0 donc f est croissante et pour x∈]2/√3,+∞[, f'(x)<0 donc f est décroissante => f admet un maximun en 2/√3 => f est maximun en 2/√3

d'où f(2/√3)=(2/√3)(4-(2/√3)²)/2=(2/√3)(4-4/3)/2=(2/√3)(12/3-4/3)/2

=(2/√3)(8/3)/2=(16/3√3)/2=8/3√3=8√3/9≈1,54m²

 

3) Prix motif=1,54m²*24€/m²=36,96€

 

 

Exercice 2

 

41/(17+(47/(4-51/a)))=2009/2008

41/(17+(47/(4a/a-51/a)))=2009/2008

41/(17+(47/(4a-51)/a))=2009/2008

41/(17+(47a/(4a-51)))=2009/2008

41/((17(4a-51)+47a)/(4a-51))=2009/2008

41/((68a-51+47a)/(4a-51))=2009/2008

41/((115a-51)/(4a-51))=2009/2008

41(4a-51)/(115a-51)=2009/2008

(164a-51)/(11a-51)=2009/2008

2008(164a-51)=2009(11a-51)

329312a-102408=231035a-102459

98277a=-51

a=-51/98277

a=-1/1927

 

 

 

 

 

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.