Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

bonjour est-ce que vous pouvez m'aider svp alor voila dans un grenier on souhaite construire une chambre de forme paralélépipèdique de volume le plus grand possible. le grenier est representer par un prisme droit a base triangulaire la chambre est representer par le pavé droit rpstzuvw OA=OB=4 AD=5m On note OP=x 1.montrer que UP=4-x 2.donner l'expression du volume V(x) en fonction de x en cm^3 de la chambre. 3.vérifier que V(x)=-10(x-2)²+40 4.montrer que V(2)=40 et que V(x)≤40 5.en deduire le volume maximal possible de la chambre et la valeur de x pour laquelle il est atteint.



Bonjour Estce Que Vous Pouvez Maider Svp Alor Voila Dans Un Grenier On Souhaite Construire Une Chambre De Forme Paralélépipèdique De Volume Le Plus Grand Possib class=

Sagot :

JL03

pour trouver UP tu doit utiliser Thalés

AU/AB=AP/AO=PU/BO

PU=(AP*BO)/AO=((4-x)*4)/4=4-x ce qui démontre UP=4-x

calcul de Vx

RP*PS*UP

RP=2x    PS=AD=5  UP=4-x  soit Vx=2x*5*(4-x)=10x(4-x)=40x-10xcarré

si Vx=-10(x-2)²+40 pour vérifier il suffit de le dévelloper

-10(xcarré-4x+4)+40=-10x carré+40x-40+40=40x-10x carré

ce qui vérifie Vx=-10(x-2)²+40

bonne chance

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.