Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

montrer que, (1+j)^2n+1=-j^n+2

Sagot :


D'abord je pense que tu as dans ton énoncé pour tout n de N* ou alors c'est pas > mais bel et bien >= (plus grand ou égal à..)
Soit P(n) la propriété un : 2n > n
* Vérifions que P(n) est vraie.
u1 = 2>1
Donc P(n) est vraie.
* Supposons que P(n) est vraie et démontrons alors que P(n+1) est vraie donc que :
u n+1 = 2n+1 > n+1
2n > n
2 x 2n > 2n
2n+1 > 2n
Or pour tout n de N* 2n> n+1
donc 2n+1 > n+1
Donc P(n+1) est vraie
Donc P(n+1) est vraie pour tout n de N*

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.