Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Diagonale
Segment de droite qui relie deux sommets non consécutifs dans un polygone. Voici un tableau qui donne le nombre de diagonales d dans un polygone à n côtés ou sommets lorsque n varie de 3 à 10 :
n
3
4
5
6
7
8
9
10
11
12
d
0
2
5
9
14
20
27
35
44
54
Un carré a deux diagonales ; un pentagone en a cinq ; un hexagone en a neuf.
Pour trouver le nombre de diagonales dans un polygone de n côtés où n est plus grand ou égal à 3, on peut raisonner ainsi : À partir d’un sommet, on peut tracer (n - 3) diagonales. On exclut ainsi le sommet de départ et ses deux sommets consécutifs, tous trois ne pouvant pas être l’aboutissement d’une diagonale.
Par exemple, à partir d’un sommet d’un décagone, on peut tracer 10 - 3 = 7 diagonales. Comme il y a 10 sommets, on fait 10x7 = 70. Comme chaque diagonale est comptée deux fois, on divise par 2. On fait 70 /2 = 35. Un décagone a 35 diagonales. Dans un polygone de n côtés, le nombre de diagonales est égal à n(n - 3)/2.
donc si n=103 alors nb diagonales=103(103-3)/2=103x100/2=10300/2=5150
un polygone de 103 côtés possède 5150 diagonales
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.