Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour,

 

déterminer les coefficients a,b,c etd de la fonction suivantes :

 

f(x)=ax au cube + bx au carré + cx +d

 

sachant que f(1)=-1;f(2)=9;f(-2)=17

 

et que f admet un externum en -5/3

 

je suppose que je dois me retrouver avec un système de 4 équations à 4 inconnues à résoudre avec la méthode de gauss.

 

La première équation pour moi est:

 

a+b+c+d=-1

8a+4b+2c+d=9

-8a+4b-2c+d=17

 

mais je ne sais pas comment trouver la 4ème avec l'externum -5/3

 

pouvez-vous m'aider svp?

Sagot :

f(1)=-1 donne la relation a+b+c+d=-1

f(2)=9 donne la relation 8a+4b+2c+d=9

f(-2)=17 donnela relation -8a+4b-2c+d=17

 

comme f'(x)=3ax²+2bx+c, on a f'(-5/3)=0 qui donne 25a-10b+3c=0

 

astuce : combine par + et par - les 2eme et 3eme equations : cela donne 4b+d=26 et 16a+4c=-8 soit 4a+c=-2

f(1)=-1 donne la relation a+b+c+d=-1

f(2)=9 donne la relation 8a+4b+2c+d=9

f(-2)=17 donnela relation -8a+4b-2c+d=17

f admet un externum en -5/3 donc f'(-5/3)=0

et comme f'(x)=3ax²+2bx+c, on a f'(-5/3)=0 => 25a-10b+3c=0

 

(E1) : a+b+c+d=-1

(E2) : 8a+4b+2c+d=9

(E3) : -8a+4b-2c+d=17

(E4) : 25a-10b+3c=0

 

(E2)+(E3) : 8b+2d=26 => 4b+d=13 => d=13-4b

(E2)-(E3) : 16a+4c=-8 => 4a+c=-2 => c=-2-4a

(E1) : a+b+c+d=-1 => a+b-2-4a+13-4b=-1 => -3a-3b=-12 => a+b=4 =>b=4-a

(E4) : 25a-10b+3c=0 => 25a-10(4-a)+3(-2-4a)=0 => 25a-40+10a-6-12a=0 => 23a=46

 

(E4) : 23a=46 => a=46/23=2

(E1) : b=4-a=4-2=2

(E2)-(E3) : c=-2-4a=-2-4(2)=-2-8=-10

(E2)+(E3) : d=13-4b=13-4(2)=13-8=5

 

d'où f(x)=2x³+2x²-10x+5

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.