Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

bonsoir, j'ai un petit problème pour mon dm de maths que je dois rendre pour demain matin. Pouvez vous m'aider svp? On considère un terrain de forme carrée et de coté 8 mètres, constitué par le carré ABCD. Etant donné un point M quelconque su segment [AB], on considère le carré AMNP et le triangle CDN. La partie du terrain ABCD consititué du carré AMNP et du triangle CDN a été choisie par un jardinier pour former un parterre de fleurs, le reste du terrain étant recouvert de gazon. On note x=AM ( la longueur AM étant donnée en mètres) et, quel que soit x appartenant à l'intervalle (0;8], on note S(x) l'aire (en m²) du parterre de fleurs, c'est-à-dire de la partie hachurée; 1)Justifier que, pour tout x appartenant à [0;8] : S(x)=f(x). 2) Ou le jardinier doit-il placer le point M sur le segment [AB] pour que l'aire du parterre de fleurs soit égale à la moitié de l'aire du terrain ABCD?



Sagot :

L'aire du parterre est l'aire de AMNP + l'aire de CDN

L'aire de AMNP est [tex]x^2[/tex], puisque c'est un carré.

L'aire de CDN est: (CD*hauteur en N)/2.
CD=8.
La hauteur en N a pour longueur: 8-x

Donc l'aire de CDN est: 8*(8-x)/2 = 4(8-x)

 

 

L'aire du parterre est donc: [tex]S(x)=x^2 + 4 (8-x)[/tex]

 

La moitié de l'aire de ABCD vaut:[tex]8^2 = 32[/tex]

 

On veut donc: [tex]4(8-x)+x^2= 32[/tex]

En résolvant, on obtient: x=0

 

1)Aire(parterre de fleur)=Aire(AMNP) + Aire(CDN)

Aire(AMNP)=x²

Aire(CDN)=(CD*hauteur en N)/2=8(8-x)/2=4(8-x)

Aire(parterre de fleur)=x²+4(8-x)=x²-4x+32

donc S(x)=x²-4x+32

 

2)S(x)=(1/2)Aire(ABCD)

x²-4x+32=8*8/2=64/2=32

x²-4x+32=32

x²-4x+32-32=0

x²-4x=0

x(x-4)=0 => x=0 ou x=4

x=0 => M est confondu avec A ou x=4 => M milieu [AB]

 

 

 

 

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.