Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour/Bonsoir j'aurais besoin d'aider rapidement je vous prie pour 3 exercices que j'arrive pas du tout j'aimerais avoir des réponses parce que je reçois de l'aide sans y comprendre quoi que ce soit :/
Merci d'avance
Cordialement 

Exercice 1:
Pour l'exercice suivant j'ai plutôt réussi mais j'arrive pas à finir le a) et j'arrive pas à trouver la suite de la limite

a) f(x)= 2x²-x-1 / 3x²+2 limite(x -> +infini) 2x²-x-1 / 3x²+2= lim (x -> + infini) (et là je bloque)
b) f(x)= x-sin.x / 2x+ sin.x limite(x -> +infini) x(1-sin.x/x) / x (2+sin.x/x) (et la aussi)


Exercice 6:
Soit la fonction f définie par:
f(x)= 1- racine de 1+x² / x Si x différent de 0 et f(0)=0
Montrer que f est continue en 0


Exercice 7:
On considère la fonction f définie sur IR par:
- f(x)= x².....si....x<0
- f(0)=1
- f(x)=-x²+2.....si.....x>0

1) f est-elle continue en 0 ?
2) f est-elle dérivable en 0 ?
3) tracer rapidement la courbe représentative de f

Exercice 8:
Soit la fonction f défini par f -> racine.x + racine.2-x x est réel.
1) Déterminer l'ensemble de définition de f.
2) Montrer que la courbe représentative de f dans un repère orthogonal admet pour axe de symétrie la droite d'équation x=1
3) La fonction f est-elle dérivable en 0 ? en 2 ?
4) Etudier les variations de f
5) Représenter (rapidement) f dans un repère orthogonal



Merci d'avance pour votre précieuse aide 



Sagot :

Dans  2x²-x-1, comme dans 3x²+2, quand x devient TRES TRES GRAND (positif ou negatif) les puissances de x sont toutes tres petites devant la puissance la plus grande. Il en resulte qu'on trouve la limite en ecrivant :

 2x²-x-1=x²(2-1/x-1/x²) et que l'intérieur des () tend vers 2

3x²+2==x²(3+2/x²) et que l'intérieur des () tend vers 3

quand on fait le quotient le x² se simplifie, et la limite est donc 2/3

 

x(1-sin.x/x) / x (2+sin.x/x Bonne idée ! simplifie par x et la limite apparait car sinx/x tend vers 0 : limite 1/2


1-V(1+x²) tend vers 0 quand x tend vers 0 donc lim f(x)=f(0) c'est bien continu


Non elle n'est pas continue puisque f(0)=1, lim f(x) qd x->0+ vaut 0 et lim f(x) quand x->0- vaut 2 (regardes le graphe) elle ne sera donc pas dérivable !


V(x)+V(2-x) définie pour x>=0 et 2-x>=0 donc pour x dans [0;2]

f(2-x)=f(x) donc la symétrie est assurée


traces la avec Geogebra et tu verras quoi dire ensuite...



Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.