Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonsoir! alors voilà, j'ai un petit souci en maths... j'avais déjà poser la question mais l'on m'a fait remarquer (merci d'ailleur) que j'avais fait une faute dans l'énoncé...alors avec un énoncé juste! ;) voilà l'exo: soit la fonction g définie sur R par: g (x)=2x²-4x-1 en utilisant la forme adaptée de g(x), justifier les affirmations suivantes: a) g admet -3 comme minimum b) l'équation g(x)=-1 admet deux solutions: 0 et 2 c) l'équation g(x)=-3 admeet une unique solution: -3 d) l'inéquation g(x) < -4 n'admet pas de solution. voilà, le probleme c'est que je vois pas du tout comment justifier ces affirmations... si vous pouviez m'aider ce serait sympas! ;)

Sagot :

g(x) admet un minim pour x = -b/2a soit x=1 ce minimum vaut g(1) = 2-4-1=-3

b) 2x²-4x-1=-1 --> 2x²-4x=0--> 2x(x-2)=0 racines 0 et 2

c) 2x²-4x-1=-3 -->2x²-4x-1+3=0 -->2x²-4x+2=0 2(x²-2x+1)=0 il y a une solution unique mais c'est x=1

d)c'est évident si g(x) a pour minimum -3 elle ne peut pas être inférieure à -4

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.