Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonsoir! alors voilà, j'ai un petit souci en maths... j'avais déjà poser la question mais l'on m'a fait remarquer (merci d'ailleur) que j'avais fait une faute dans l'énoncé...alors avec un énoncé juste! ;) voilà l'exo: soit la fonction g définie sur R par: g (x)=2x²-4x-1 en utilisant la forme adaptée de g(x), justifier les affirmations suivantes: a) g admet -3 comme minimum b) l'équation g(x)=-1 admet deux solutions: 0 et 2 c) l'équation g(x)=-3 admeet une unique solution: -3 d) l'inéquation g(x) < -4 n'admet pas de solution. voilà, le probleme c'est que je vois pas du tout comment justifier ces affirmations... si vous pouviez m'aider ce serait sympas! ;)



Sagot :

g(x) admet un minim pour x = -b/2a soit x=1 ce minimum vaut g(1) = 2-4-1=-3

b) 2x²-4x-1=-1 --> 2x²-4x=0--> 2x(x-2)=0 racines 0 et 2

c) 2x²-4x-1=-3 -->2x²-4x-1+3=0 -->2x²-4x+2=0 2(x²-2x+1)=0 il y a une solution unique mais c'est x=1

d)c'est évident si g(x) a pour minimum -3 elle ne peut pas être inférieure à -4

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.