Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Prouver que le reste de la diviosion euclidienne d'un nombre entier positif imapire par 2 est 1 ?

Sagot :

exemples :

3 est impair et la division Euclidienne de 3 par 2 est :

3=2*1+1

le reste vaut donc r=1

 

7 est impair et la division Euclidienne de 7 par 2 est :

7=2*3+1

le reste vaut donc r=1

 

étude :

soit N un entier impair

alors il existe un entier k tel que N=2k+1

donc la division Euclidienne de N par 2 est :

N=2*k+1

le reste vaut donc r=1

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.