Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Salut a tous Voilà j'ai un DM de maths et j'y arrive vraiment pas .. "Le roi des Indes fut tant émerveillé lorsque Sessa lui apprit le jeu que le roi lui proposa de choisir la récompense qu'il souhaitait. Le Brahmane demanda alors la quantité de grains de blé qu'il serait nécessaire pour remplir 64 cases d'un échiquier en respectant la condition suivante: la première case ne contient qu'un seul grain, et chaque case de l'échiquier doit contenir deux fois plus de grains de blé que la précédente. Pour résumer: 1 grains de blé sur la premiéré 2 grains sur la 2eme 4 grains sur la 3eme et ainsi de suite. Le roi accepta la demande de Sessa en la trouvant vraiment modeste... Mais lorsqu'un arithméticien résolut le problème, le roi se rendit compte que le Brahmane l'avait dupé et que la quantité de grains qu'il demandait était impossible a fournir." 1) En utilisant des puissances de 2, écris le calcul qui donne le nombre de grains de blé nécessaires pour remplir tout l'échiquier (on pourra utiliser des ... pour ne pas tout écrire) à cette question j'ai répondu: 20x21x22x ... x262x263 2)Vérifier ses égalités: 1+2=2²-1 1+2+2²=23-1 1+2+2²+23=24-1 En fait cette formule est vraie pour tout entier n : 1+2+2²+23+ ... +2n-1=2n-1. Et la j'ai trouver: 3=3 7=7 et 15=15 b) Utilise cette formule pour écrire plus simplement le résultat de la question 3. c) Deduis-en une valeur approchée du nombre total de grains (calculatrice !). Donne le résultat en écriture scientifique. d) La calculatrice ne permet pas de calculer la valeur exacte 264. Mais il est possible d'obtenir celle de 232. A l'aide de ce résultat et d'une "belle" multiplication a poser, prouver que la quantité exacte de grains de blé est 18 446 744 073 709 551 615.



Sagot :

le nb de cgrains est la somme des puissances de 2, de 2^0 à 2^63 ; la formule donnée dit que cela fait (2^64)-1

 

2^10 vaut 1024 (c'est le "K" des informaticiens) donc 2¨30 vaut 1024*1024*1024 et le nombre 2^32 est 4*1024*1024, 2^64 c'est deux fois plus...

 

 

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.