Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Vrai ou Faux ?

Pour justifier "Vrai" il faut démontrer la propriété dans le cas général. Pour "faux" il suffit de donner un contre-exemple.

1) La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et positive sur R, est croissante.

2) La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et croissante sur R, est croissante.

3)La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et strictement négative sur R, est strictement positive.

4) La fonction f définie sur R par f(x)=e^-u(x), où u est une fonction dérivable sur R, est décroissante.



Sagot :

1. Faux car [tex]e^{x^{2}}[/tex] a pour dérivée [tex]2x.e^{x^{2}}[/tex]qui n(est pas toujours positive

2.Vrai, la dérivée de [tex]e^{u(x)} est u'(x).e^{u(x)}[/tex] si u(x) est croissante alors u'(x)est positive et la dérivée de [tex]e^{u(x)}[/tex] est positive donc la fonction initiale est croissante

3.Vrai une exponentielle est toujours positive

4.Faux soit [tex]e^{-sinx}[/tex] sa dérivée est [tex]-sinxcosx.e^{-sinx}[/tex] qui n'est pas constamment négative.

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.