Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

on se propose de résoudre le problème suivant : peut on trouver un réel positif qui, une fois élevé au cube à la même valeur que son double augmenté de 1? a) réaliser cette feuille de calcul et donner un encadrement d'une solution au problème b) modifier la feuille de calcul de façon à donner une valeur approchée de la solution à 0.1 près

Sagot :

x³=2x+1

x³-2x-1=0

on remarque que pour x=-1 on (-1)³-2(-1)-1=-1+2-1=0 d'où x=-1 solution de x³-2x-1=0

d'où x³-2x-1=(x+1)(ax²+bx+c)=ax³+bx²+cx+ax²+bx+c=ax³+(a+b)x²+(b+c)x+c

avec a=1, a+b=0, b+c=-2 et c=-1

d'où

a=1

a+b=0 => b=-a=-1

c=-1

vérification : b+c=-1+(-1)=-2 cqfd

d'où x³-2x-1=(x+1)(x²-x-1)

On cherche les solutions de x²-x-1=0 est de la forme ax²+bx+c=0

∆=b²-4ac=(-1)²-4(1)(-1)=1=(√5)² donc ∆>0 => 2 solutions x₁ et x₂

x₁=(-b-√∆)2a=(-(-1)-√5)/(2(1))=(1-√5)/2

x₂=(-b+√∆)2a=(-(-1)+√5)/(2(1))=(1+√5)/2

d'où x³-2x-1=(x+1)(x-(1-√5)/2)(x-(1+√5)/2)

les solutions de x³-2x-1=0 sont : S={-1; (1-√5)/2; (1+√5)/2}

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.