Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour,

 je voudrais savoir comment démontrer qu'un quadrilatère est un parrallelogramme ? :S merci d'avance ! 



Sagot :

 Si un quadrilatère a ses côtés opposés parallèles deux à deux, alors c'est un parallélogramme.

 Si un quadrilatère a ses diagonales qui se coupent en leur milieu, alors c'est un parallélogramme.

Si un quadrilatère, non croisé, a deux côtés opposés parallèles et de même longueur, alors c'est un parallélogramme.

 Si un quadrilatère, non croisé, a ses côtés opposés deux à deux de même longueur, alors c'est un parallélogramme.

 Si un quadrilatère, non croisé, a ses angles opposés de même mesure, alors c'est un parallélogramme.

 Si , alors le quadrilatère ABCD est un parallélogramme.

 Si , alors le quadrilatère ABCD est un parallélogramme.

Si un quadrilatère a ses côtés opposés parallèles deux à deux, alors c'est un parallélogramme.

 Si un quadrilatère a ses diagonales qui se coupent en leur milieu, alors c'est un parallélogramme.

 Si un quadrilatère, non croisé, a deux côtés opposés parallèles et de même longueur, alors c'est un parallélogramme.

 Si un quadrilatère, non croisé, a ses côtés opposés deux à deux de même longueur, alors c'est un parallélogramme.

 Si un quadrilatère, non croisé, a ses angles opposés de même mesure, alors c'est un parallélogramme.

 Si , alors le quadrilatère ABCD est un parallélogramme.

 Si , alors le quadrilatère ABCD est un parallélogramme.