Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour j'ai quelque diffilculté a réssoudre se problème

La fonction f est définie sur R par f(x)= x3 (cube)/3-5x-22/3

 

2). Etudiez le sens de variation de f sur R

b) quel est le nombre de solution de l'équation f(x)=0?

c) Le résultat est_il en accord avec ce que vous avez observé sur la copie d'écran ci dessus?

d)Donner un encadrement de la longueur de 10 puissance -3 de chaqu'une des solutions

e) Résolver l'inéquation f(x)<0

 

Merci pour votre aide



Sagot :

Le signe de la fonction dérivée donne le sens de variation.

Ici f'(x) vaut x²-5 soit (x+V5)(x-V5) et son signe est donc facile à étudier.

f est donc croissante de -inf à -V5, décroissante de -V5 à V5 et croissante à nouveau sur V5,+inf (en fait le graphe est une copie décalée de celui de y=x^3)

 

comme f(-V5)=-5V5/3+5V5-22/3 >0 et f(V5)=5V5/3-5V5-22/3<0 elle va couper Ox en trois endroits : deux d'abscisses négatives "voisines" de -V5 et l'autre de l'ordre de 4.

on peut les déterminer en remarquant que f(-2)=-8/3+10-22/3=10-30/3=0 donc que l'on a f(x)=(x+2)(x²/3-2x/3-11/3) donc f(x)=0 a pour solutions -2 et les solutions de l'équation x²-2x-11=0

 

f(x) est donc <0 entre -inf et la première racine, et entre les 2 autres.

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.