Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Le signe de la fonction dérivée donne le sens de variation.
Ici f'(x) vaut x²-5 soit (x+V5)(x-V5) et son signe est donc facile à étudier.
f est donc croissante de -inf à -V5, décroissante de -V5 à V5 et croissante à nouveau sur V5,+inf (en fait le graphe est une copie décalée de celui de y=x^3)
comme f(-V5)=-5V5/3+5V5-22/3 >0 et f(V5)=5V5/3-5V5-22/3<0 elle va couper Ox en trois endroits : deux d'abscisses négatives "voisines" de -V5 et l'autre de l'ordre de 4.
on peut les déterminer en remarquant que f(-2)=-8/3+10-22/3=10-30/3=0 donc que l'on a f(x)=(x+2)(x²/3-2x/3-11/3) donc f(x)=0 a pour solutions -2 et les solutions de l'équation x²-2x-11=0
f(x) est donc <0 entre -inf et la première racine, et entre les 2 autres.
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.