Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
simplifiée la dérivée donne [tex]\frac{x^2-x+6}{(x-2)^2^}[/tex]
le réalisant du numérateur est négatif donc le numérateur est toujours positif
le dénominateur est positif également car carré parfait.
donc la dérivée est positive
Bonjour,
[tex]f(x)=1-\frac{x-2-2x}{(x-2)^2}=\frac{(x-2)^2-x+2+2x}{(x-2)^2}=\frac{x^2-3x+6}{(x-2)^2}[/tex]
Déja la valeur x=2 est interdite car elle annule le dénominateur.
[tex](x-2)^2[/tex] est toujours >0 car c'est un carré.
[tex]x^2-3x+6[/tex] est un polynome du 2ème degré de la forme [tex]ax^2+bx+c[/tex]
On calcule delta :^
[tex]delta = b^2-4ac=(-3)^2-4\times6\times1=-15[/tex]
Si delta est négatif, le polynome n' a pas de racines.
Comme a est positif, la concavité de sa courbe est orientée vers le haut et le polynome est toujours positif.
Donc f(x) est toujours positif sauf pour x=2
A+
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.