Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjours j'ai un DM de math pour lundi et j'ai un exercice que je n'arrive pas à faire et à comprendre pouvez vous m'aider svp ? ( niveau première S) voici l'énoncée :

 La pente d'une courbe en un point M( xm; ym ) est la pente de la tangente à la courbe au point M. Si la courbe est le graphe de y=f(x) , et f est différentiable, il est égale à la dérivée
f ' (xm)

a) Trouvez la pente de la courbe y=x^3 + 4x   au point où x=2
b) Trouvez les coordonnées du point de la courbe : y=x^2-5+2   où la pente est 1

merci d'avance pour votre aideAvatar de l'utilisateur ninise Ninise

Sagot :

a) f' (x) = 3x² + 4  => f'(2) = 16
b) f'(x) = 2x - 5 il faut 2x - 5 = 1 => 2x = 6 => x = 3 le point est (3;-4)